A A5802 Pages: 2

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: EC301

Course Name: DIGITAL SIGNAL PROCESSING

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

Marks

- 1 a) If $x(n) = \{2,3,4,5,6,4,3,2,1\}$, $h(n) = \{2,3,4,5\}$. Find x(n)*h(n) using overlap save (7) method.
 - b) Find the 8 point DFT of the sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using DITFFT radix (8) 2 algorithm.
- 2 a) State and prove any three properties of DFT.

- (7)
- b) Find the 8-point DFT of the real sequence $x(n) = \{1,2,2,2,1,0,0,0\}$ using (8) decimation in frequency FFT algorithm.
- 3 a) Find the circular convolution of $x_1(n) = \{1,2,3,4\}$ and $x_2(n) = \{2,1,2\}$. (5)
 - b) The first eight points of the 14-point DFT of a real valued sequence are [12, -1+3j, 3+j4, 1-j5, -2+j2, 6+j3, -2-j3, 10]
 - i) Determine the remaining points.
 - ii) Evaluate x[0] without computing the IDFT of X(k).
 - c) Find the 8-point DFT of the sequence {2, 0,2,0, 2, 0, 2, 0} using 4-point DFTs. (5)

PART B

Answer any two full questions, each carries 15 marks

- 4 a) Find the response of the signal $x(n) = 2\cos(\pi/2)n$ when applied to an FIR filter (5) with impulse response $h(n) = \{1,3,1\}$.
 - b) A second order linear phase FIR filter has a zero at $z = \frac{1}{2}$. Obtain the magnitude (5) and phase response of the filter.
 - c) An all pole analog filter have transfer function $H(s) = 1/(s^2+5s+6)$. Find H(z) by impulse invariance method. Assume T=1 sec.
- 5 a) Design an ideal FIR high pass filter with frequency response (7)

$$H_d(\omega) = 1 \ for \ \frac{\pi}{4} \le |\omega| \le \pi$$

 $0 \ for \ |\omega| \le \frac{\pi}{4}$

Find the value of h(n) for N=11.

b) Design a digital Butterworth filter satisfying the following constraints

$$0.707 \le \left| H(e^{j\omega}) \right| \le 1$$
 for $0 \le \omega \le \frac{\pi}{2}$ and $\left| H(e^{j\omega}) \right| \le 0.2$ for $\frac{3\pi}{4} \le \omega \le \pi$

using bilinear transformation, (Assume T=1sec)

(8)

A A5802 Pages: 2

6 a) A low pass filter has the desired frequency response:

$$H_d(\omega) = e^{-j3\omega}$$
 for $0 < \omega < \frac{\pi}{2}$
= 0 for $\frac{\pi}{2} < \omega < \pi$

Determine h(n) based on frequency sampling technique.

b) For the given specification, design an analogButterworth filter $0.9 \le |H(j\Omega)| \le 1 \qquad \text{for } 0 \le \Omega \le 0.2\pi \qquad \text{and}$ (7)

 $|H(j\Omega)| \le 0.2$ for $0.4\pi \le \Omega \le \pi$

PART C

Answer any two full questions, each carries 20 marks

- 7 a) Draw the direct form-I and direct form-II structures for a system described by the difference equation $y(n) = x(n) + \frac{1}{2}x(n-1) + 3y(n-1) 2y(n-2)$.
 - b) Write short notes on any two finite word length effects in DSP systems with (10) examples.
- 8 a) Draw and explain the internal architecture of TMS320C67XX digital signal (10) processor.
 - b) Consider a signal $x(n) = (\frac{1}{2})^n u(n)$. Obtain the signals with: (5)
 - i) Decimation factor 3 ii) Interpolation factor 3
 - The signal $x(n) = (\frac{1}{2})^n u(n)$ is applied to a decimator that decimates the input signal by a factor of 2. Find the spectrum of the output and plot it.
- 9 a) Draw the cascade form structure for a discrete time sequence described (5)

by:
$$\frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}.$$

- b) Realise a FIR system with function $H(z) = 1 + \frac{3}{4}z^{-1} + \frac{17}{8}z^{-2} + \frac{3}{4}z^{-3} + z^{-4}$. (5)
- c) Write short notes on finite word length effect in IIR digital filters. (10)

(8)